ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ЛЭРС УЧЁТ»

УТВЕРЖДАЮ

УТВЕРЖДАЮ

(в части п. 8 «Методика поверки»)

Генеральный директор

Заместитель директора по

производственной метрологии

ФГУП «ВНИИМС»

Н.В. Иванникова

то в година 2018 г.

ООО «ЛЭРС УЧЁТ»

C. HORCYPDIA DOOD ON DAILOR OF THE PARTY OF

СИСТЕМЫ ИЗМЕРИТЕЛЬНЫЕ АВТОМАТИЗИРОВАННОГО КОНТРОЛЯ И УЧЕТА ПОТРЕБЛЕНИЯ РЕСУРСОВ «ЛЭРС УЧЕТ»

Руководство по эксплуатации

Введение

В настоящем руководстве излагаются сведения, необходимые для ознакомления с составом и функционированием Систем измерительных автоматизированного контроля и учета потребления ресурсов «ЛЭРС УЧЕТ», (далее по тексту – «ЛЭРС УЧЕТ» или Система), ввода ее в эксплуатацию, порядка эксплуатации, проверки технического состояния и технического обслуживания в процессе использования.

При эксплуатации Системы необходимо пользоваться следующими документами:

- паспорт на Систему;
- руководство по эксплуатации на Систему.

Перечень используемых сокращений:

 $T\mathcal{I}$ – техническая документация;

 ΠC – паспорт;

ЭВМ – персональная электронная вычислительная машина;

 $P \ni -$ руководство по эксплуатации;

TY – технические условия;

ПО – программное обеспечение;

APM – автоматизированное рабочее место;

Объект учета – отдельно стоящее здание/сооружение с уникальным адресом;

1 Назначение и выполняемые функции

«ЛЭРС УЧЕТ» предназначены для измерений:

- объема, массы, объемного расхода, массового расхода, температуры и давления теплоносителя в открытых, закрытых и тупиковых системах теплоснабжения (в качестве теплоносителя используется: вода, перегретый пар, сухой и влажный насыщенный пар);
- объема, массы, объемного расхода, массового расхода, температуры и давления воды в системах горячего водоснабжения;
- объема, объемного расхода, температуры и давления воды в системах холодного водоснабжения;
- активной и реактивной электрической энергии и мощности в системах электроснабжения;
- объема, объемного расхода, температуры, давления, перепада давления в системах газоснабжения;
- вычислений стандартных объема и объемного расхода газа в системах газоснабжения;
- вычислений количества теплоты (тепловой энергии) в системах горячего водоснабжение, открытых, закрытых и тупиковых системах теплоснабжения.

«ЛЭРС УЧЕТ» также предназначены для автоматического сбора, накопления, обработки, хранения измеренных и вычисленных значений, контроля режимов работы технологического и энергетического оборудования, формирования управляющих воздействий, формирования отчетных документов, отображения и передачи измерительной информации в другие информационные системы в рамках согласованного регламента.

Область применения «ЛЭРС УЧЕТ» - поквартирный и общедомовой учет потребляемых ресурсов, коммерческий и технологический учет, диспетчерский и технологический контроль параметров и количества потребления ресурсов на различных объектах промышленного, жилого и прочих назначений.

Функции, выполняемые «ЛЭРС УЧЕТ» включают:

- периодический (с дискретностью до 1 минуты) и/или по запросу автоматический сбор привязанной к единому календарному времени измерительной информации;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от несанкционированного доступа;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- ведение протоколов получения измерительной информации от СИ;
- контроль линий связи со средствами измерений 1-го уровня;
- просмотр документов на экране дисплея, распечатка на принтере в табличном виде или в виде графиков/диаграмм;
- отображение изменений измерительной информации в реальном времени на мнемосхемах;
- сравнительный анализ данных о потреблении энергоресурсов;
- экспорт измерительной информации и отчетных документов в файл;
- индикация на экране и звуковая сигнализация выхода параметров за технологические и аварийные пределы;
- формирование и передача управляющих воздействий технологическому и энергетическому оборудованию;
- передача результатов измерений в энергоснабжающую организацию в рамках согласованного регламента;
- предоставление доступа к результатам измерения через специализированный вебинтерфейс.

2 Технические характеристики

Поддерживаемые типы каналов связи:

- физическая линия;
- коммутируемая линия;
- сеть GSM (услуги CSD и GPRS);
- локальная сеть и Интернет (TCP и UDP).

Поддерживаемые операционные системы:

- Windows Vista с пакетом обновления 2;
- Windows 7:
- Windows 8;
- Windows Server 2003;
- Windows Server 2008:
- Windows Server 2012.
- Windows Server 2016

Минимальные аппаратные средства:

- процессор Intel Pentium 4 1600МГц или выше, с поддержкой архитектуры х86;
- объем оперативной памяти не менее 4096MБ;
- объем необходимого места на жестком диске: не менее 1Гб
- монитор с разрешением не менее 1024x768 точек;
- для работы по сети (в случае установки компонентов системы на два или более компьютеров) необходима сетевая плата стандарта Ethernet со скоростью передачи от 100Мб/с;

Минимальные аппаратные средства позволяют собирать, обрабатывать и хранить данные по 1000 объектам учета на протяжении 10 лет.

Минимальные интервалы опроса:

- в автоматическом режиме: 60 с;
- текущих значений: 1 с.

Для установки и работы системы требуется программное обеспечение Microsoft .NET Framework 4.0 и Windows Installer версии 4.5 или выше.

Хранилище данных «ЛЭРС УЧЕТ» выполняется на основе ПО Microsoft SQL Server 2008 или выше. Доступ к хранилищу ограничен и предоставляется только через программный компонент «ЛЭРС УЧЕТ - Сервер», который выполняется под отдельной учетной записью Windows. При подключении к хранилищу, «ЛЭРС УЧЕТ - Сервер» использует только Windows-авторизацию, SQL-авторизация по имени пользователя и паролю не поддерживается.

«ЛЭРС УЧЕТ» содержит средства для резервного копирования и восстановления базы данных системы, которые могут быть использованы для переноса хранилища на другой компьютер. В системе предусмотрена защита от несанкционированного доступа к данным и сохранность данных при отключении электропитания.

Полный средний срок службы системы – не менее 10 лет.

3 Состав системы

«ЛЭРС УЧЕТ» является проектно-компонуемым изделием и представляет собой измерительную систему вида ИС-2 (в соответствии с ГОСТ Р 8.596-2002). Конкретный состав системы (количество измерительных каналов, подключаемое оборудование, отчетные документы, алгоритмы обработки и представления результатов) определяется проектной и эксплуатационной документацией на нее.

«ЛЭРС УЧЕТ» является сложной четырёхуровневой структурой с централизованным управлением и распределенной функцией измерения. Структурная схема «ЛЭРСУЧЕТ» приведена на рисунке 1.

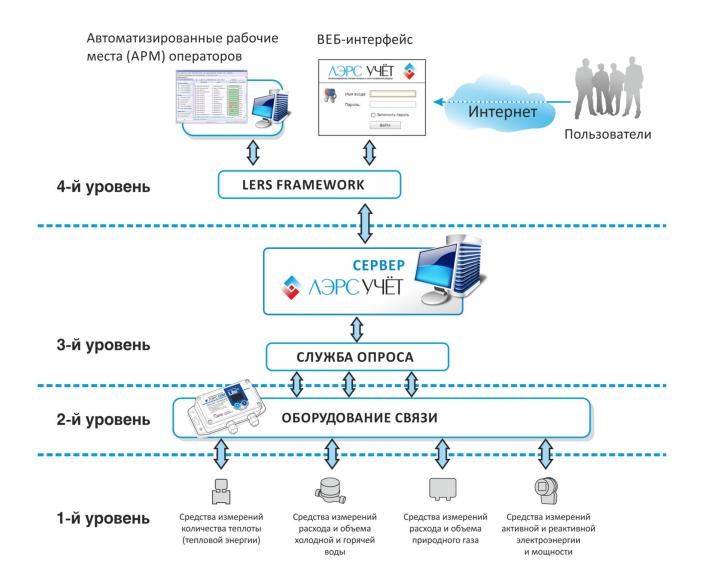


Рисунок 1. Структурная схема «ЛЭРС УЧЕТ»

«ЛЭРС УЧЕТ» имеет четырёхуровневую структуру, схема которой приведена на рисунке 1.

- 1-й уровень информационно измерительный комплекс (ИИК), включающий в себя ПИП утвержденного типа, регистрационные номера в Федеральный информационный фонде по обеспечению единства измерений (рег. №) которых приведены в таблице 1.
- 2-й уровень связующие компоненты, включающие технические средства приемапередачи данных, адаптеры-преобразователи интерфейсов, адаптеры-преобразователи протоколов, адаптеры-преобразователи сигналов и устройства для переноса данных, реализующее каналы передачи данных, по которым измерительная информация, полученная от СИ расположенных на первом уровне, передается на третий уровень.
- 3-й уровень серверная часть информационно-вычислительного комплекса (ИВК) на основе специализированного программного обеспечения «ЛЭРС УЧЕТ», построенный по клиент-серверной технологии. Состоит из одного сервера ЛЭРС УЧЁТ и одной или нескольких служб опроса.
- 4-й уровень клиентская часть информационно-вычислительного комплекса (ИВК) на основе специализированного программного обеспечения «ЛЭРС УЧЕТ», построенный по клиент-серверной технологии. Состоит из одного или нескольких АРМ оператора, Веб-интерфейса и связующего компонента LERS Framework, который служит для взаимодействия с компонентами 3-го уровня.

«ЛЭРС УЧЕТ» может состоять из следующих подсистем учета:

- теплофикационной воды (а);
- горячей воды (b);
- холодной воды (с);
- пара (d);
- природного газа (e);
- электрической энергии (f).

Конкретный состав системы определяется проектной и эксплуатационной документацией на нее. В систему может входить несколько средств измерений одного наименования. «ЛЭРС УЧЕТ» может включать в себя все или некоторые средства измерений из приведенных в таблице 1.

Таблица 1

Наименование СИ	Номер по Госреестру СИ	Применяется в подсистемах	
1	2	3	
Счётчики холодной и горячей воды ВСХ, ВСХд, ВСГ, ВСГд, ВСТ	51794-12	a, b, c	
Счетчики холодной и горячей воды крыльчатые СКБ	26343-08	a, b, c	
Счетчики холодной и горячей воды ETK/ETW Водоучет	19727-03	a, b, c	
Преобразователи расхода электромагнитные ПРЭМ	17858-11	a, b, c	
Расходомеры-счетчики ультразвуковые Днепр-7	15206-07	a, b, c	
Расходомеры-счетчики жидкости ультразвуковые US800	21142-11	a, b, c	
Расходомеры-счетчики жидкости ультразвуковые КАРАТ	44424-10	a, b, c	
Расходомеры электромагнитные Питерфлоу РС	46814-11	a, b, c	
Расходомеры с интегратором акустический ЭХО-Р-02	21807-06	a, b, c	
Счетчики-расходомеры электромагнитные РМ-5	20699-11	a, b, c	
Теплосчетчики SA-94	43231-09	a, b, c	
Теплосчетчики КМ-5	18361-10	a, b, c	
Теплосчетчики ТЭМ-106	48754-11	a, b, c	
Теплосчетчики Тепло-3Т	43238-09	a, b, c	
Теплосчетчики ТЭМ-104	48753-11	a, b, c	
Теплосчетчики ТСК7	48220-11	a, b, c	
Теплосчетчики ТСК5	20196-11	a, b, c, d	
Теплосчетчики ТС-07	20691-10	a, b, c	
Теплосчетчики МКТС	28118-09	a, b, c	
Теплосчетчики ИМ2300Т	18759-09	a, b, c, d	
Теплосчетчики ЛОГИКА 8941 (мод. 8941-Э18941-Э5, 8941- В18941-В3, 8941-К18941-К3, 8941-У18941-У4, 8941- Т18941-Т5)	43409-09	a, b, c	
Теплосчетчики ЛОГИКА 8943 (мод. 8943-Э18943-Э5, 8943- У1, 8943-У3, 8943-В1, 8943-Т18943-Т5)	43505-09	a, b, c	
Тепловычислители СПТ-961	35477-12	a, b, c, d	
Теплосчетчики 7 КТ	28987-12	a, b, c	
Теплосчетчики СТУ-1	26532-09	a, b, c	
Теплосчетчики Теплокон	21497-11	a, b, c	
Теплосчетчики СКМ-2	47039-11	a, b, c	
Теплосчетчики Струмень ТС-05	18245-12	a, b, c	
Теплосчетчики КАРАТ-Компакт	28112-09	a, b, c	

Теплосчетчики КАРАТ ТМК-10	21368-12	a, b, c
Теплосчетчики КАРАТ ТМК-15	38151-10	a, b, c
Теплосчетчики-регистраторы МАГИКА мод. А, Б, Д, Е, Т	23302-08	a, b, c
Теплосчетчики-регистраторы Взлет ТСР-М	27011-09	a, b, c, d
Продолжение таблицы 1		
1	2	3
Теплосчетчики СТ10	26632-11	a, b, c
Теплосчетчики Т-34	48334-11	a, b, c
Теплосчетчики ТТ-9	50223-12	a, b, c
Теплосчетчики Т-21 мод. "Компакт", "Комбик"	21678-09	a, b, c
Теплосчетчики ультразвуковые Струмень ТС-07	51000-12	a, b, c
Счетчики количества теплоты и воды ультразвуковые SKU-02	20974-08	a, b, c
Счетчики жидкости и количества теплоты СВТУ-10М	50703-12	a, b, c
Счетчики тепловой энергии СТК MULTIDATA и Minocal Combi	15832-08	a, b, c
Комплексы учета энергоносителей ТЭКОН-20К	35615-10	a, b, c, d
Комплексы измерительные ЭЛЬФ и ЭЛЬФ-ТС, КАРАТ-307 и КАРАТ-307-ТС	46059-11	a, b, c, e, f
Приборы вторичные теплоэнергоконтроллеры ИМ2300	14527-11	a, b, c, d, e
Преобразователи измерительные регистрирующие МСД-200	52103-12	a, b, c, e
Измерители-регуляторы универсальные 8-канальные ТРМ138	40036-08	a, b, c, d, e
Счетчики воды «Пульсар» с цифровым выходом RS-485 или радиомодулем	36935-08	b, c, e, f
Счетчики импульсов – регистраторы Пульсар	25951-10	b, c, e, f
Счетчики электрической энергии многофункциональные СЭТ- 4TM.03M, СЭТ-4TM.02M	36697-12	f
Счетчики электрической энергии однофазные электронные СЭТ-1	13677-09	f
Счетчики активной и реактивной электрической энергии трехфазные CE 303	33446-08	f
Счетчики активной электрической энергии трехфазные СЕ 301	34048-08	f
Счетчики активной электрической энергии однофазные многотарифные CE 102	33820-07	f
Счетчики активной электрической энергии однофазные многотарифные CE 102M	46788-11	f
Счетчики электрической энергии многофункциональные ПСЧ- 4TM.05MД	51593-12	f
Счетчики электрической энергии трехфазные электронные СЭТ3	14206-09	f
Счетчики электрической энергии трехфазные статические ПСЧ- 3AP.08Д	50053-12	f
Счетчики электрической энергии трехфазные статические ПСЧ- 3TA.08	48528-11	f
Счетчики электрической энергии трехфазные статические ПСЧ- 3APT.09	47122-11	f
Счетчики электрической энергии трехфазные статические ПСЧ- 3AP.06T	47121-11	f

Счетчики электрической энергии трехфазные статические ПСЧ- 3APT.07Д	41136-09	f
Счетчики электрической энергии трехфазные статические ПСЧ-3АРТ.08	41133-09	f
Окончание таблицы 1		
1	2	3
Счетчики электрической энергии трехфазные статические ПСЧ- 3AP.05.2M	40485-09	f
Счетчики электрической энергии многофункциональные ПСЧ- 3TM.05Д	39616-08	f
Счетчики активной энергии статические однофазные Меркурий-203	31826-10	f
Счетчики электрической энергии трехфазные статические Меркурий 230	23345-07	f
Счетчики ватт-часов активной энергии переменного тока статический Меркурий 200	24410-07	f
Счетчики ватт-часов активной энергии переменного тока статический Меркурий 201	24411-12	f
Счетчики ватт-часов активной энергии переменного тока статический Меркурий 202	26593-07	f
Счетчики ватт-часов активной энергии переменного тока статический Меркурий 231	29144-07	f
Счетчики электрической энергии трехфазные электронные ЦЭ2727A	33137-06	a
Счетчики ватт-часов активной энергии переменного тока статические СЭБ-2А. 07	25613-12	f
Счетчики ватт-часов активной энергии переменного тока статические СЭБ-2А. 08	33137-06	f
Счетчики электрической энергии ЦЭ6803В	12673-06	f
Счетчики электрической энергии ЦЭ6850	20176-06	f
Блоки коррекции объема газа измерительно-вычислительные БК	48876-12	e
Корректоры объема газа ЕК270	41978-09	e
Комплексы измерительные природного газа ИМ2300ГК	26403-04	e
Корректоры СПГ761	36693-13	e
Корректоры СПГ762	37670-13	e

В состав системы также могут входить следующие компоненты:

- сервер сбора данных;
- автоматизированные рабочие места (АРМ);
- технические средства приема-передачи данных, адаптеры-преобразователи интерфейсов, адаптеры-преобразователи протоколов, адаптеры-преобразователи сигналов, устройства переноса данных, блоки питания;
- руководство по эксплуатации с методикой поверки;
- паспорт.

В состав программного обеспечения (ПО) «ЛЭРС УЧЕТ» входит:

- базовое (системное) ПО, включающее операционную систему (ОС) Microsoft Windows, версии Windows XP + пакет обновления 3 или выше;
- ПО сервера баз данных Microsoft SQL Server 2008 R2 Express или выше;
- программное обеспечение «ЛЭРС УЧЕТ» (ПО «ЛЭРС УЧЕТ») версии 3.07 и выше.

В процессе эксплуатации допускается замена пришедшего в негодность и не подлежащего восстановлению функционального блока на другой того же типа или другого типа, но имеющий идентичные характеристики и допущенный к применению. Заменяемый блок должен быть поверен в установленном порядке. Изменение типа блока или заводского номера должно быть отражено в разделе "Сведения о поверке функциональных блоков системы" паспорта.

4 Устройство и принцип работы

ПО «ЛЭРС УЧЕТ» состоит из основных компонентов:

- сервер, выполняет все взаимодействия с базами данных, включая запись событий в базу данных и архив событий, резервное копирование данных; авторизацию пользователей; контроль прав доступа пользователей к данным системы; автоматическое формирование и рассылку отчетных документов; диагностику нештатных ситуаций на объектах учета; координацию совместной работы пользователей (включая уведомления о выявленных нештатных ситуациях);
- служба опроса, взаимодействует с оборудованием связи (связующими компонентами), включает библиотеку драйверов, которая реализует получение измерительной информации по соответствующим протоколам обмена от СИ;
- автоматизированное рабочее место (APM), предназначенное для отображения измерительной информации в виде таблиц, графиков и диаграмм; печати отчетных документов; мониторинга текущих значений потребления энергоресурсов; отображения мнемосхем с текущими данными в реальном времени; просмотр журналов;
- веб-интерфейс, предназначенный для отображения данных, печати и экспорта отчетов для пользователей системы через сеть Интернет.

5 Меры безопасности

Перед включением системы в сеть питания, необходимо заземлить ее функциональные блоки и подключаемые к ней приборы и устройства, подлежащие заземлению согласно их ТД.

Устранение дефектов системы, замена, присоединение и отсоединение ее первичных преобразователей от трубопровода должно производиться при полностью отсутствующем избыточном давлении в трубопроводе и отключенном напряжении питания.

К работе с системой допускаются лица, имеющие необходимую квалификацию, прошедшие инструктаж по технике безопасности и изучившие настоящее руководство. Монтаж системы производят специализированные организации, имеющие лицензию Главгосэнергонадзора на право выполнения таких работ.

6 Подготовка и порядок работы

6.1 Общие указания

После транспортирования при отрицательных температурах вскрытие упаковки можно производить только после выдержки в отапливаемом помещении в течение 24 часов.

Вблизи измерительных преобразователей, контроллеров и сигнальных кабелей не должно быть других кабелей и устройств, создающих электромагнитные поля напряженностью более 40 А/м частотой 50 Гц. Сигнальные кабели прокладываются на расстоянии не менее 0,5 м от силовых

цепей сети переменного тока. Желательно размещение сигнальных кабелей в заземленных металлических трубах (если их длина более 3 м) или металлорукавах - при этом не только улучшается помехозащищенность, но и увеличивается механическая прочность линий связи.

Во время подготовки к работе необходимо убедиться, что все первичные датчики смонтированы на местах и подключены к измерительным компонентам. Измерительные компоненты должны быть включены и настроены в режиме учета заданного ресурса. Монтаж и настройка первичных датчиков и измерительных компонент осуществляется согласно их ТД.

После этого необходимо убедиться в правильности подключения измерительных компонент к коммуникационному оборудованию (связующим компонентам), которое будет их связывать с ЭВМ, где установлено программное обеспечение «ЛЭРС УЧЕТ». В случае подключения через коммутируемую телефонную линию необходимо убедиться, что в телефонной линии есть напряжение вызова. При подключении через GSM-сеть надо убедиться, что в точке установки сотового модема есть устойчивый прием GSM-сети нужного оператора связи.

После установки и настройки оборудования необходимо установить на ЭВМ, которая будет выполнять функции сервера, ПО «ЛЭРС УЧЕТ». Для этого необходимо загрузить с сайта http://www.lers.ru/soft/ пакет установки ПО с разрядностью, соответствующей разрядности операционной системы ЭВМ и запустить его. Следуя инструкциям программы установки, установить программное обеспечение «ЛЭРС УЧЕТ» на ЭВМ. Подробнее процесс установки и настройки ПО «ЛЭРС УЧЕТ» описан в документе «ЛЭРС Учет. Руководство администратора».

6.2 Порядок работы с ПО «ЛЭРС УЧЕТ»

После подготовки оборудования к работе и установки программного обеспечения, необходимо ввести информацию о компонентах Системы в ПО «ЛЭРС УЧЕТ». Все настройки системы выполняются через APM «ЛЭРС УЧЕТ». Программа установки автоматически создает учетную запись для работы администратора системы с именем входа **admin** и паролем **admin**. Эту учетную запись и пароль необходимо использовать при первом входе в систему.

Для сбора данных с измерительных компонент в «ЛЭРС УЧЕТ» необходимо:

- подключить коммуникационное оборудование, через которое будет устанавливаться связь с измерительными компонентами, к ЭВМ и настроить его;
- зарегистрировать коммуникационное оборудование в ПО «ЛЭРС УЧЕТ»;
- ввести в ПО «ЛЭРС УЧЕТ» информацию об объектах учета и установленном измерительном оборудовании, заполнив необходимые справочники.

Подключение к ЭВМ коммуникационного оборудования и его настройка производится согласно соответствующей ТД. Как правило, требуется включить питание оборудования, подключить его к ЭВМ и установить драйверы.

Для регистрация коммуникационного оборудования в программном обеспечении «ЛЭРС УЧЕТ» необходимо заполнить информацию о портах опроса в соответствующем справочнике.

Для внесения информации об измерительном оборудовании надо заполнить справочник объектов учета. При заполнении справочника по объектам учета необходимо задать общие параметры:

- название и адрес объекта учета;
- модель и серийный номер средства измерения;
- модель и серийный номер коммуникационного оборудования;
- параметры канала связи, необходимые для работы коммуникационного оборудования (например, номер телефона для телефонных линий).

После заполнения необходимых справочников, можно производить опрос объектов учета как в ручном, так и в автоматическом режимах. Для опроса в ручном режиме необходимо выбрать в списке объектов учета требуемый объект и дать команду на опрос. Для постановки объекта учета на автоматический опрос требуется задать расписание опроса (период времени, в течение которого

будут производиться подключение к удаленному оборудованию и количество попыток получения измерительной информации).

Результаты опроса измерительной информации будут сохранены в хранилище данных (базе данных). Если по какой либо причине опрос прошел неудачно, то оператор может выяснить причину посмотрев протокол опроса.

После опроса оператор может просмотреть архивную информацию о потреблении в табличном и графическом виде, а также напечатать отчеты о потреблении. Просмотр данных в табличном и графическом видах может осуществляться за разные интервалы времени.

«ЛЭРС УЧЕТ» позволяют проводить мониторинг текущих значений потребления на объекте учета. Для этого оператор должен дать соответствующую команду, указав перечень отображаемых параметров и интервал опроса, по истечении которого система будет заново запрашивать измерительную информацию. После этого появится график текущего потребления, обновляемый в реальном времени.

Во время работы с Системой рекомендуется регулярно (например, еженедельно) делать резервную копию базы данных на внешний носитель (например, на CD- или DVD-диск). Создание резервной копии базы данных поможет быстро восстановить всю информацию в случае поломки ЭВМ.

Более подробная информация о порядке работы оператора приведена в документе «ЛЭРС УЧЕТ. Руководство пользователя».

7 Техническое обслуживание

Техническое обслуживание "ЛЭРС УЧЕТ" производится в соответствии с требованиями ТД, приведенными в руководствах по эксплуатации применяемых измерительных и связующих компонент.

8 Методика поверки

Настоящий раздел устанавливает объем, средства и методы первичной и периодической поверок системы.

Интервал между поверками системы- 4 года.

Состав измерительных каналов (ИК) системы приведен в Паспорте на систему.

Метрологические характеристики (MX) и основные технические характеристики системы и ее измерительных компонентов приведены в описании типа средства измерений.

Система подлежит покомпонентной (поэлементной) поверке:

- 1) каждый ИК системы условно подразделяют на первичный измерительный преобразователь (ПИП) и вторичную часть ИК (ВИК);
- 2) проверяют наличие действующих свидетельств о поверке (или отметок о поверке в эксплуатационной документации) на все ПИП, входящие в состав ИК системы;
 - 3) проводят проверку ИК;
 - 4) принимают решение о годности каждого отдельного ИК.

Результаты проверки каждого ИК системы считаются положительными, если:

- ПИП имеет действующее свидетельство о поверке (либо отметку о поверке в эксплуатационной документации). Заявленные метрологические характеристики ИК соответствуют указанным в описаниях типа средств измерений по перечню раздела «Комплектность средства измерений» описания типа на систему (кроме ИК электрической энергии);
- по завершению опроса всех ИК в отчетах, представленных в ВИК, присутствуют результаты измерений с указанием текущей даты и времени. Абсолютная погрешность, получаемая за счет передачи информации от средств измерений в базу данных системы, не превышает ± 1 единицы младшего разряда индицируемого (передаваемого) значения.
 - погрешность ИК электрической энергии не превышает допускаемых значений

указанных в описании типа на систему;

 пределы допускаемой абсолютной погрешности часов сервера сбора данных не превышают допускаемых значений указанных в описании типа на систему.

Допускается проведение поверки отдельных ИК в соответствии с письменным заявлением владельца системы с обязательным указанием информации об объёме проведённой поверки в перечне поверенных ИК, являющемся неотъемлемой частью свидетельства о поверке системы.

ИК системы, прошедшие поверку с отрицательным результатом, выводятся из эксплуатации и не включаются в перечень поверенных ИК, являющийся неотъемлемой частью свидетельства о поверке системы.

Периодическую поверку системы выполняют в процессе эксплуатации системы.

После ремонта системы, аварий, если эти события могли повлиять на метрологические характеристики ИК, а также после замены ее измерительных компонентов проводят первичную поверку системы. Допускается проводить поверку только тех ИК, которые подверглись указанным выше воздействиям. При этом срок действия свидетельства о поверке на систему в части указанных ИК устанавливается до окончания срока действия основного свидетельства о поверке.

8.1 Операции поверки.

Перечень операций поверки приведен в таблице 2.

Таблица 2.

Наименование операции	Раздел настоящей методики	Обязательность проведения операции при поверке		
		первичной поверке	периодическ ой поверке	
Проверка соответствия внешнего вида, комплектности, маркировки и упаковки требованиям технической документации	8.4.1	да	да	
Опробование	8.4.2	да	да	
Проверка ИК системы	8.4.3	да	да	
Проверка идентификационных данных программного обеспечения	8.4.4	да	да	

8.2 Средства поверки

Наименование оборудования	Требуемые параметры	Используемые типы (марки) оборудования
времени, принимающии сигналы спутниковой	предел допускаемой аосолютной погрешности привязки фрона выходного импульса 1 Гц к шкале координированного времени UTC ± 1 мкс	Тайм-сервера ФГУП «ВНИИФТРИ, радиочасы МИР РЧ-01 рег. № 27008-04, переносной ПК с ПО для работы с радиочасами МИР РЧ-01

Для контроля климатических условий рекомендуется использовать:

- прибор комбинированный Testo 608-H2 рег. № 53505-13;
- барометр-анероид метеорологический БАММ-1 рег. № 5738-76.

Для контроля климатических условий допускается применение других аналогичных средств измерений, пределы допускаемой погрешности которых не превышают пределов, указанных в описаниях типов рекомендуемых для контроля условий поверки средств измерений.

Допускается использовать иные эталоны и оборудование, не приведенные в таблице 1, при соблюдении следующих условий:

- погрешность средств измерений не должна быть более 1/5 предела контролируемого значения погрешности;
- допускается использовать средства измерений, имеющие пределы допускаемых значений погрешности не более 1/3 пределов контролируемых значений погрешности, в этом случае должен быть введен контрольный допуск, равный 0,8 (см. МИ 187-86, МИ 188-86);

Все средства измерений, используемые при поверке, должны быть поверены и иметь действующие свидетельства о поверке.

8.3 Требования безопасности

К поверке «ЛЭРС УЧЕТ» допускаются лица, имеющие необходимую квалификацию, изучившие инструкцию по эксплуатации на «ЛЭРС УЧЕТ», прошедшие инструктаж по охране труда при работе с электротехническими установками и освоившие работу с «ЛЭРС УЧЕТ».

При проведении поверки следует соблюдать требования по охране труда, предусмотренные документами «Правила по охране труда при эксплуатации электроустановок» (Приложение к приказу Министерства труда и социальной защиты РФ №328н от 24.07.2013 г.), ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности», ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности», ГОСТ 12.1.019-2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты», ГОСТ 12.2.091-2002 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования», указаниями по безопасности, приведенными в Инструкциях по эксплуатации системы, ее компонентов, используемых эталонов, средств измерений и испытательного оборудования.

8.4 Условия проведения поверки

Поверка проводится на действующем оборудовании, в реальных условиях эксплуатации «ЛЭРС УЧЕТ». Условия эксплуатации указаны в описании типа на систему.

Перед проведением поверки представляют следующие документы:

- руководство по эксплуатации;
- описание типа системы:
- свидетельство о предыдущей поверке системы (при периодической поверке).

На месте эксплуатации системы выполняют следующие подготовительные работы:

- подготавливают к работе средства поверки в соответствии с эксплуатационной документацией на них;
 - проверяют наличие паспортов (свидетельств о поверке) на средства измерений;
- измеряют и заносят в протокол поверки результаты измерений температуры и влажности окружающего воздуха, атмосферного давления.

8.5 Подготовка к проведению поверки

- 8.5.1 Уточняется состав поверяемых систем, количество измерительных каналов, количество и типы компонентов систем, и их соответствие паспорту (формуляру) на поверяемую систему (по представленной документации на компоненты).
- 8.5.2 Проводятся подготовительные работы, изложенные в документации на измерительные, связующие, вычислительные и вспомогательные компоненты систем.
- 8.5.3 Проводится проверка работоспособности программного обеспечения систем в соответствии с эксплуатационной документацией.

8.6 Проведение поверки

8.6.1 Проверка соответствия требованиям технической документации, внешнего вида, комплектности и маркировки

При внешнем осмотре должно быть установлено соответствие системы требованиям технической документации.

При внешнем осмотре проверить:

- отсутствие механических повреждений, следов перегрева или короткого замыкания на корпусах технических средств;
- отсутствие повреждений соединительных проводов и кабелей;
- разъемы и соединительные колодки, которые не должны иметь видимых повреждений, деталей с отсутствующим или ослабленным креплением;
- все каналы, по которым передается измерительная информация, должны быть опломбированы в точках, где возможно несанкционированное воздействие на результаты измерений.

При обнаружении несоответствий дальнейшие операции по поверке ИК прекращают до устранения выявленных несоответствий.

Средства измерений, входящие в состав измерительно-информационных каналов, предназначенных для целей коммерческого учета, должны быть зарегистрированы в Федеральный информационный фонде по обеспечению единства измерений и иметь действующие свидетельства о поверке, выданные метрологической службой, аккредитованной на право поверки данного типа средств измерений.

При проверке комплектности должно быть установлено соответствие комплектности системы требованиям технической документации. Проверить:

- комплектность системы;
- комплектность технической документации.

Результаты проверки считаются положительными, если выполняются перечисленные выше требования.

8.6.2 Опробование

Перед проверкой функционирования системы в целом проводят проверку функционирования ИК системы. Проверку работоспособности остальных компонентов системы производят при проверке функционирования системы в целом.

Для проверки каждого ИК проводят проверку наличия действующего свидетельства о поверке далее - ПИП (или отметки о поверке в эксплуатационной документации);

Проводят экспериментальную проверку погрешности ИК системы по соответствующей методике. Методики проверки ИК, в зависимости от типа ИК, приведены в п. 8.4.3 настоящей методики.

Результаты проверки ИК системы считаются положительными, если ПИП, входящий в состав проверяемого ИК, имеет действующее свидетельство о поверке (либо отметку о поверке в эксплуатационной документации) и каждый ИК прошел экспериментальную проверку с положительным результатом.

Если в процессе проверки обнаруживают ПИП, имеющий свидетельство о поверке (или отметку о поверке в эксплуатационной документации) с истекшим сроком действия, то ИК системы, в состав которого входит такой ПИП, признают прошедшим поверку с отрицательным результатом.

Если результаты экспериментальной проверки ИК системы отрицательные, то эти ИК системы признают прошедшим поверку с отрицательным результатом.

8.6.2.1 Проверка функционирования измерительных каналов системы, используемых для коммерческого учета энергоресурсов.

Перед проверкой функционирования измерительных каналов системы проверяют правильность их подключения в соответствии с эксплуатационной документацией на средства измерений и проектной документацией на систему .

Измерительные каналы системы считаются работоспособными, если они подключены в соответствии с эксплуатационной документацией на средства измерений и проектной документацией на систему и средства измерений функционируют в соответствии с эксплуатационной документацией на них.

8.6.2.2 Проверка функционирования системы в целом.

Проверку функционирования системы в целом проводят с помощью программы «ЛЭРС УЧЕТ» на рабочем месте оператора системы. При опробовании проверяется отображение измеряемых параметров на мониторе APM, работоспособность и управление системы в соответствии с требованиями руководства по эксплуатации.

Для проверки функционирования системы, все технические средства измерительноинформационных каналов должны быть указаны в базе системы и должна быть задана конфигурация испытуемой системы. Запустить программу «ЛЭРС УЧЕТ» с правами оператора или администратора. С помощью программы «ЛЭРС УЧЕТ» осуществить сбор данных от всех ИК в составе системы, следующим образом:

1) Вызвать закладку «Точки учета» (рис. 1).

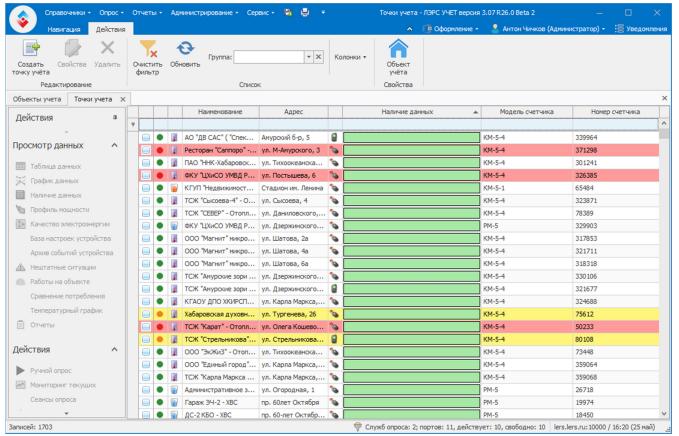


Рисунок 1. Закладка «Точки учета» программы «ЛЭРС УЧЕТ».

- 2) В панели «Действия» вызвать форму групповых операций (рис. 2).
- 3) В списке операций выбрать операцию «Опрос» и «Ручной опрос».
- 4) Запросить суточные, текущие и архивные параметры.
- 5) Дождаться завершения опроса всех точек учета.
- 6) В панели «Просмотр потребления» выбрать «Отчеты».
- 7) В центре печати отчетов сформировать отчет с параметрами потребления (рис. 3). Для настройки параметров отчёта нажать кнопку «Сформировать новый отчёт» и задать период за последние семь дней.

Групповые операции	×
Ручной опрос Задайте параметры ручного опроса	
За период: с: 18.05.2018	
< <u>Н</u> азад <u>Д</u> алее> Отм	иена

Рисунок 2. Параметры групповой операции «Ручной опрос данных».

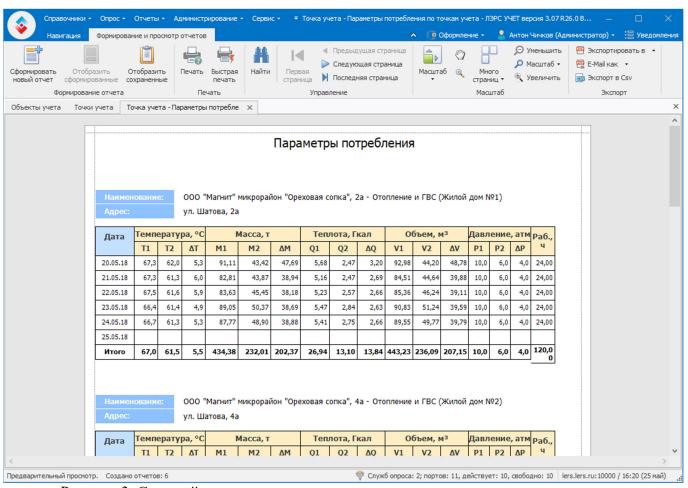


Рисунок 3. Сводный отчет по точкам учета.

Функционирование системы в целом считается успешным, если по завершению опроса всех ИК коммерческого учета в отчетах, представленных в программе, присутствуют результаты измерений с указанием текущей даты и времени.

- 8.6.2.3 Проверку регистрации и индикации неисправности линий связи измерительных каналов и автоматического считывания информации из энергонезависимой памяти измерительного компонента за период отсутствия обмена данными провести в указанной ниже последовательности:
 - оборвать связь между измерительным компонентом и сервером системы;
 - по истечении не менее двух часов связь восстановить;
 - с измерительного компонента, входящего в состав испытуемого канала, считать архив значений всех измеряемых величин и параметров за интервал, включающий время отсутствия связи.

Для сокращения времени испытаний, допускается не дожидаясь запуска автоматического опроса данных, выполнить ручной опрос данных за период отсутствия связи с измерительным компонентом. Для этого необходимо запустить ручной опрос часовых архивных данных за требуемый интервал из панели «Действия» на закладке «Точки учета» (рис. 4). По завершении чтения перейти к просмотру данных в табличном виде (рис. 5). Данную проверку допускается совместить с п.8.6.3.3 настоящей Методики поверки.

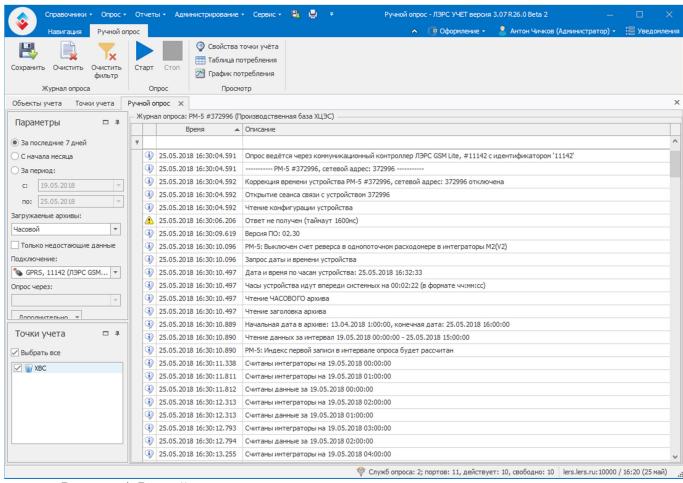


Рисунок 4. Ручной опрос часовых архивных данных.

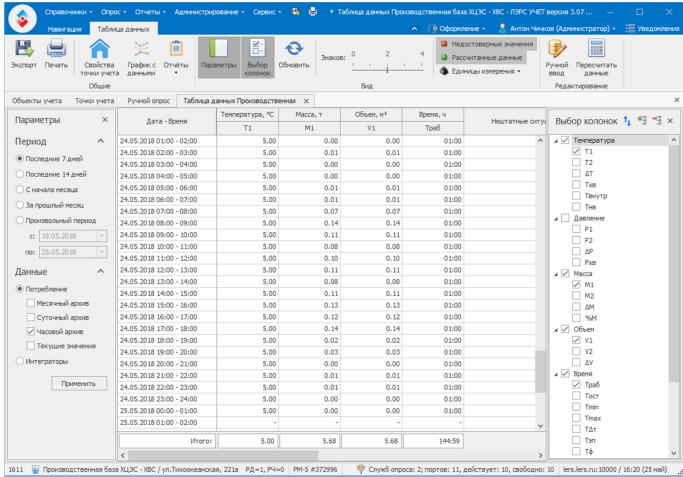


Рисунок 5. Просмотр архивных данных в табличном виде.

Результаты опробования считаются положительными, если:

- после обрыва и восстановления связи «ЛЭРС УЧЕТ» обновляет свою базу данных, считывая недостающие данные из архива измерительного компонента;
- на мониторе автоматизированного рабочего места (APM) индицируются архивные значения, считанные с измерительного компонента за время отсутствия связи с ним.

8.6.3 Проверка метрологических характеристик

8.6.3.1 Проверка конфигурации измерительных каналов, заданных в системе.

Проверка заключается в определении соответствия заданных в программе «ЛЭРС УЧЕТ» значений параметров конфигурации измерительных каналов, значениям, заданным в паспорте.

Запустить программу «ЛЭРС УЧЕТ» с правами администратора. Открыть справочник «Оборудование», в котором отображается перечень всех измерительных компонент, с указанием типа (модели) и заводского (серийного) номера компонента (рис.6).

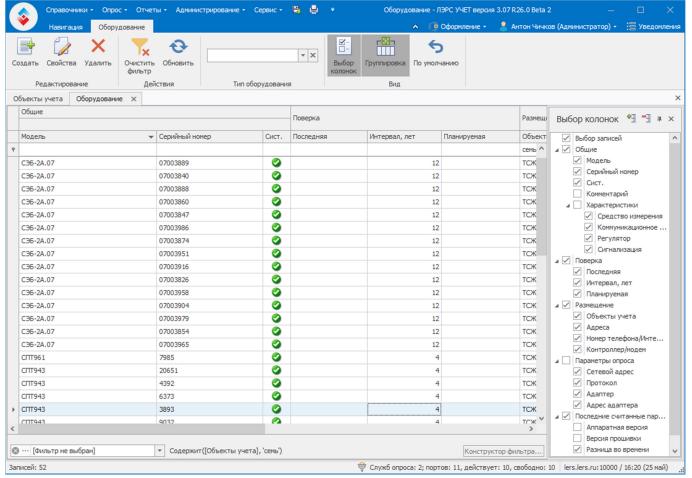


Рисунок 6. Просмотр списка измерительных компонент.

Результаты проверки считаются положительными, если тип и заводской номер каждого измерительного компонента соответствуют паспорту на систему;

8.6.3.2 Проверка хода часов сервера сбора данных

Для определения хода часов компонентов системы используется тайм-сервер ntp1. vniiftri.ru, свободный доступ к которому предоставляется ФГУП ВНИИФТРИ.

В параметрах настройки автоматической синхронизации времени ПК устанавливается NTP-сервер ntp1.vniiftri.ru. На экран монитора выводятся показания времени системы с точностью до секунд. На экране монитора одновременно должны просматриваться показания часов таймсервера и показания часов системы. В конце любого часа нажать клавишу Print Screen и сформировать файл полученного изображения экрана. По истечении 24 часов снова нажать клавишу Print Screen и сформировать второй файл изображения экрана.

Пользуясь значениями времени из первого файла, вычислить разность по формуле:

$$\Delta t1 = (tc1 - tr1),$$

где tc1 — показания часов системы, tr1 — показания часов тайм-сервера.

Пользуясь значениями времени из второго файла, вычислить вторую разность по формуле:

$$\Delta t2 = (tc2 - tr2),$$

где tc2 — показания часов системы, tr2 — показания тайм-сервера в конце суток.

Ход часов компонентов системы за сутки вычисляется по формуле:

$$\Delta$$
суточная = $\Delta t2 - \Delta t1$,

где $\Delta t1$, $\Delta t2$ — разности показаний часов системы и тайм-сервера, определенные в начале и конце 24-х часового периода.

Результаты испытаний считаются положительными, если значение хода часов не изменилось более чем на ± 5 с за одни сутки.

8.6.3.3 Определение абсолютной погрешности, получаемой за счет передачи информации от средств измерений в базу данных системы.

Для определения абсолютной погрешности, получаемой за счет передачи информации от средств измерений в базу данных системы, используется метод сверки данных о потреблении энергоресурсов, находящихся в памяти средства измерений с соответствующими им данными в базе данных системы. Данные, находящиеся в памяти средства измерений ИК, считываются с индикатора средства измерений или через цифровой порт обмена информацией с использованием переносного компьютера с помощью устройства обмена через цифровой порт и необходимого для этого программного обеспечения. На монитор APM выводятся данные из базы данных, полученные из памяти средств измерений.

Абсолютная погрешность, получаемая за счет передачи информации от средств измерений в базу данных системы, не должна превышать ± 1 единицы младшего разряда индицируемого (передаваемого) значения.

Результаты проверки считаются положительными, если на мониторе APM индицируются архивные значения, соответствующие значениям, считанным непосредственно с измерительного компонента.

- 8.6.3.4 Проверка заявленных метрологических характеристик ИК, предназначенных для коммерческого учета энергоресурсов.
- 8.6.3.4.1 Проверка расчета метрологических характеристик ИК электрической энергии.

Границы интервала основной погрешности измерительного канала (ИК) электроэнергии рассчитывают для вероятности P=0,95 для нормальных условий.

Границы интервала основной относительной погрешности ИК активной электроэнергии вычисляют по формуле (1):

$$\delta_{UK0_A} = \pm 1, 1\sqrt{\delta_{TT}^2 + \delta_{TH}^2 + \delta_{\theta_A}^2 + \delta_{\pi}^2 + \delta_{oc}^2}$$
 (1)

где $\delta_{\mathit{UK}0A}$ — границы интервала основной относительной погрешности ИК активной электроэнергии в % для вероятности 0,95;

 $\delta_{\it TT}$ — предел допускаемой относительной погрешности по амплитуде трансформатора тока (TT) в %;

 δ_{TH} — предел допускаемой относительной погрешности по амплитуде трансформатора напряжения (TH) в %;

 δ_{θ} $_{A}$ – границы интервала относительной погрешности измерения активной электроэнергии обусловленной угловыми погрешностями измерительных трансформаторов в %;

 δ_{π} – предел допускаемой относительной погрешности, обусловленной потерями напряжения в линии связи между TH и счетчиком в %;

 δ_{oc} – предел допускаемой основной относительной погрешности счетчика электроэнергии в %.

Границы интервала суммарной абсолютной угловой погрешности θ в минутах и границы интервала относительной погрешности $\delta_{\theta A}$ в % определяются по формулам:

$$\theta = \sqrt{\theta_I^2 + \theta_U^2} \tag{2}$$

$$\delta_{\theta A} = 0.029 \cdot \theta \cdot tg\,\varphi \tag{3}$$

где θ_I и θ_U — пределы допускаемых угловых погрешностей TT и TH в минутах, Страница 21 из 26

соответственно;

 φ – угол сдвига между векторами первичных тока и напряжения в градусах.

Границы интервала погрешности ИК в рабочих условиях эксплуатации рассчитывают для вероятности 0,95. В качестве рабочих условий используют данные, указанные в технической документацией на систему.

Границы интервала относительной погрешности ИК активной электроэнергии в рабочих условиях вычисляют по формуле (4):

$$\delta_{HK_{PA}} = \pm 1.1 \cdot \sqrt{\delta_{TT}^2 + \delta_{TH}^2 + \delta_{\theta A}^2 + \delta_{JI}^2 + \delta_{OC}^2 + \sum_{i=1}^{m} \delta_{\partial on_i}^2}$$
(4)

где $\delta_{{\it И}{\it K}_{\rm P}}{}_{\it A}$ — границы интервала относительной погрешности ИК активной электроэнергии в % для вероятности 0,95;

 $\delta_{TT}, \delta_{TH}, \delta_{\theta A}, \delta_{JI}, \delta_{OC}$ — те же величины, что и в формуле 1;

 $\delta_{_{\partial on_{i}}}$ — предел относительной допускаемой дополнительной погрешности счетчика электроэнергии в рабочих условиях от i — ой влияющей величины;

т – общие число влияющих величин.

Границы интервала основной относительной погрешности ИК реактивной электроэнергии вычисляют по формуле (5):

$$\delta_{HK_{0P}} = \pm 1, 1 \cdot \sqrt{\delta_{TT}^2 + \delta_{TH}^2 + \delta_{\theta P}^2 + \delta_{T}^2 + \delta_{OC}^2}$$
 (5)

где $\delta_{\mathit{HK}_{\mathit{OP}}}$ — границы интервала основной относительной погрешности ИК реактивной электроэнергии в % для вероятности 0,95;

 $\delta_{\theta P}$ – границы интервала относительной погрешности измерения реактивной электроэнергии, обусловленной угловыми погрешностями измерительных трансформаторов в %;

$$\delta_{\theta P} = 0.029 \cdot \theta \cdot ctg\theta \tag{6}$$

Остальные величины в формулах (5) и (6) те же, что в формулах (1) и (3).

Границы интервала относительной погрешности ИК реактивной электроэнергии в рабочих условиях вычисляют по формуле (7)

$$\delta_{UK_{PP}} = \pm 1, 1 \cdot \sqrt{\delta_{TT}^2 + \delta_{TH}^2 + \delta_{\theta P}^2 + \delta_{JI}^2 + \delta_{OC}^2 + \sum_{i=1}^{m} \delta_{\partial on_i}^2}$$
(7)

где все величины те же, что в формулах (1), (3), (4) и (6).

П р и м е ч а н и е - Формулы (1), (4), (5) и (7) даны для случая, когда отклонение внешних влияющих величин от нормальных значений вызывает дополнительные погрешности только у счетчика электроэнергии, а составляющими погрешности измерения электроэнергии обусловленными погрешностью задания интервала времени интегрирования электрической мощности, погрешностью передачи информации по ГОСТ 4.199, погрешностью обработки данных можно пренебречь.

8.6.3.4.2 Проверка соответствия заявленных метрологических характеристик ИК, приведенных в описаниях типа средств измерений.

Проверка заявленных метрологических характеристик ИК на соответствие метрологическим характеристикам, приведенным в описаниях типа средств измерений (кроме электрической энергии), проводится сравнением завяленных метрологических характеристик ИК с указанными в описаниях типа средств измерений, перечень которых приведен в разделе «Комплектность средства измерений» описания типа на систему.

Заявленные метрологические характеристики ИК должны соответствовать указанным в описаниях типа средств измерений по перечню раздела «Комплектность средства измерений» описания типа на систему.

8.6.4 Проверка идентификационных данных ПО СИ.

Проводится по алгоритму CRC16 CCITT с помощью программы LRC.exe.

Для этого необходимо выполнить следующие действия:

- загрузить архив с программой FsumFrontEnd с веб-сайта http://fsumfe.sourceforge.net/
- распаковать архив и выполнить файл FsumFrontEnd.exe;
- добавить нужные файлы, нажав кнопку нажав Ctrl+F или кнопку «Add files»;
- выбрать метод расчета контрольной суммы crc16 ccitt
- запустить расчет контрольных сумм, нажав Ctrl+U или кнопку "Calculate hashes"
- считать вычисленные контрольные суммы файлов в колонке crc16 ccitt.

Сравнивают наименование программного обеспечения (далее - ПО) и номера версий, отображаемые на графическом дисплее ПК, с данными, приведёнными в описании типа на систему.

Систему признают прошедшей идентификацию ПО, если заявленные идентификационные данные соответствуют данным, приведенным в описании типа средства измерений.

8.7 Оформление результатов поверки

- 8.7.1 После окончания работ по поверке выписывают свидетельство о поверке системы, оформленное в соответствии с приказом 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», с приложением, содержащим список ИК, прошедших проверку с положительным результатом.
- 8.7.2 При отрицательных результатах проверки отдельных ИК, эти ИК не допускают к применению, выписывают на них извещение о непригодности, оформленное в соответствии с приказом 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

9 Условия хранения и транспортирования

Компоненты системы хранят в упаковке согласно условиям хранения $1(\Pi)$ (отапливаемое хранилище) по ГОСТ 15 150 в отапливаемых помещениях с температурой окружающей среды от 10 до 35 °C и относительной влажностью не более 80 % при отсутствии в воздухе агрессивных паров и газов, способных вызвать коррозию или иные повреждения.

Компоненты системы в транспортной таре могут транспортироваться всеми видами транспорта (авиационным транспортом – в герметизированных и обогреваемых отсеках самолетов) в условиях хранения изделий $3(\mbox{Ж3})$ (неотапливаемое хранилище) по ГОСТ 15150. Должна быть предусмотрена защита упаковки от попадания атмосферных осадков и пыли. Допускается температура окружающего воздуха от минус 50 до 55 °C и относительная влажность до (95 \pm 3) % при температуре 35 °C.

При погрузке в транспортные средства и выгрузке из них следует соблюдать требования к обращению с продукцией, выраженные манипуляционными знаками.

После транспортирования при отрицательных температурах использование компонентов системы допускается после выдержки в отапливаемом помещении в течение 24 часов.

10 Условия применения

Компоненты системы должны эксплуатироваться в условиях, описанных в соответствующих руководствах по эксплуатации.

Рабочие условия эксплуатации сервера и АРМ:

напряжение питания от 210 до 230 В;

- частота тока от 50 до 60 Гц;
- температура от 10 до 35 °C;
- влажность (без конденсации) от 10 до 80 %.

Рабочие условия эксплуатации измерительных компонентов должны соответствовать укзанным в описании типа на данные средства измерений.

11 Гарантии изготовителя (поставщика)

Изготовитель (поставщик) гарантирует соответствие системы требованиям ТУ 4232-002-28872919-18 при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации 12 месяцев со дня ввода системы в эксплуатацию. Гарантия распространяется только на системы, у компонентов которых не нарушены пломбы.

Компоненты системы, у которых во время гарантийного срока будет обнаружено несоответствие требованиям ТУ 4232-002-28872919-18, ремонтируются изготовителем (поставщиком) или заменяются другими.

12 Сведения об утилизации

При утилизации системы следовать указаниям ТД на ее функциональные блоки.

При утилизации контроллеров со встроенным аккумулятором, встроенный аккумулятор следует отдельно направлять на переработку по установленным правилам. В городские мусоросборники бытовых отходов отслужившие аккумуляторы помещать нельзя!

13 Лист регистрации изменений

№ изм.	Номера листов (страниц)			Всего листов	№	Входящий № сопроводит.			
	измененных	замененных	новых	аннулиров.	(страниц) в документе	в документа	документа и дата	Подпись	Дата
				-					