
Общество с ограниченной ответственностью «Теплотехническая компания»

КОММУНИКАЦИОННЫЕ КОНТРОЛЛЕРЫ «ЛЭРС ETHERNET»

Исполнение IP65

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЦБЛК.4232-005-28855080-13 ТУ (Редакция 004)

Оглавление

Введение	3
Описание и работа изделия	4
Назначение изделия	4
Общие технические характеристики	4
Особенности ЛЭРС Ethernet	5
Состав изделия	5
WEB-Интерфейс	ε
Аутентификация	6
Состояние	7
Локальный IP-адрес	7
Последовательный порт	8
Внешнее подключение	9
Прочие настройки	10
Перезагрузка	10
Интерфейсы подключения	11
Последовательный порт	11
Управление работой контроллера, его настроечные и системные параметры	13
Функционирование	13
Режимы передачи данных	13
Работа контроллера в режиме «TCP/UDP-Клиент»	13
Работа контроллера в режиме «TCP/UDP-Сервер»	13
Процедура автоматического перезапуска	13
Маркировка	14
Транспортирование и хранение	15
Условия транспортирования	15
Условия хранения	15
Информация об изготовителе	15

История изменения документа				
Ред. №	Дата	Описание		
000	06.06.2017	Создание.		
001	25.07.2017	WEB-Интерфейс		
002	28.08.2017	Мелкие правки		
003	22.12.2017	Исправлены опечатки		
004	26.02.2018	Добавлена информация о доступных скоростях работы интерфейсов		

Введение

Данное руководство по эксплуатации предназначено для ознакомления технического, обслуживающего и эксплуатирующего персонала с принципом работы, техническими характеристиками, конструктивными особенностями, условиями применения и порядком работы оборудования передачи данных ETHERNET-контроллеров «ЛЭРС Ethernet».

В данном документе приняты следующие условные обозначения:

- 1) Ключевые слова основных положений выделены в тексте жирным шрифтом.
- 2) Важная информация выделена жирным шрифтом на фоне серого прямоугольника.
- 3) Действия, которые необходимо строго выполнять выделены курсивом
- 4) Ссылки, адреса интернет, названия вкладок и кнопок выполняются <u>подчеркнутым</u> <u>шрифтом.</u>

Данное руководство распространяется на модификации ETHERNET-контроллеров: ЛЭРС Ethernet, аппаратных версий «LC-ETH-2-RS232/485-1.X.X» и «LC-ETH-2-RS232/CAN-1.X.X»

Данное руководство распространяется на контроллеры работающие под управлением программного обеспечения версии 1.0.0

ETHERNET -контроллеры ЛЭРС Ethernet представляют собой устройства передачи данных для эксплуатации в проводных сетях стандарта Ethernet 10/100.

ETHERNET-контроллеры предназначены для организации канала связи между подключенным оборудованием и информационной системой верхнего уровня.

В качестве подключаемого оборудования могут выступать: приборы учета тепла, воды и электричества оснащенные информационными выходами RS-232, RS-485/CAN0. Технические характеристики представлены в разделе «Общие технические характеристики».

В качестве информационной системы верхнего уровня могут выступать различные программные комплексы сбора данных, например ЛЭРС УЧЕТ — предназначенный сбора и анализа данных о потреблении ресурсов тепла, воды, пара и электричества с широкого списка приборов учета. Подробнее см. http://www.lers.ru/soft/

Описание и работа изделия

Назначение изделия

Оборудование передачи данных ЛЭРС Ethernet, ETHERNET-контроллеры ЛЭРС Ethernet, предназначено для организации проводных каналов передачи данных в сетях Ethernet.

Общие технические характеристики

Контроллер оснащен двумя последовательными портами, стандартов RS232C и RS485/CAN0, для подключения к информационному порту прибора учета ресурсов.

Контроллер работает с любыми приборами учета ресурсов оснащенных следующими видами портов для подключения коммуникационных портов:

- 1) RS-232, трехпроводное подключение без контроля потока сигналы RX, TX, GND;
- 2) RS-232, трехпроводное подключение без контроля потока и питанием приборного интерфейса сигналы RX, TX, GND, питание сигналами CTS;
- 3) RS-232, пятипроводное подключение с контролем потока сигналы RX, TX, CTS, RTS, GND;
- 4) RS-485/CAN0 , двухпроводное, полудуплексное подключение, с возможностью использования в шине RS-485/CAN0 или как подключение типа «точка-точка».

Контроллер выпускается с установленным программным обеспечением. Модификация, смена программного обеспечения может производиться на предприятии изготовителе и в авторизированных им сервисных центрах.

Настроечные параметры необходимые для функционирования контроллера хранятся в энергонезависимой памяти.

Сводный список технических характеристик и параметров приведен в таблице №1 (см. стр. 5).

Таблица 1. Технические характеристики

No	Наименование	Модель ЛЭРС Ethernet		
1	Порт подключения RS-232, RS-485/CAN0	Есть		
2	Формат интерфейса RS-232	Сигналы ТХ, RX, CTS, RTS, GND		
3	Максимальная длина кабеля RS-232	до 30 м		
4	Формат интерфейса RS-485/CAN0	RS-485: сигналы «А», «В». CAN0: сигналы Data+ («В») и Data- («А») Полудуплекс. Авто-определение направления передачи.		
5	Маусиманьная пнина уабеня RS.			
6	Канал, используемый для передачи информации	Ethernet 10/100		
7	Скорость и формат последовательных портов	Скорость: 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Количество бит данных: 5,6,7,8 Режимы контроля четности: «N», «E», «О», «1», «0» Количество стоп-бит: 1, 2		
8	Отображение режимов работы	Монохромный дисплей Отражаются, IP-адрес, скорость последовательного порта.		
9	Подключение Ethernet	Разъем RJ45		
10	Напряжение питания	220В, 0.1А, переменного тока, 50Гц.		
11	Выход питания интерфейса	9В, 0.1А, постоянного тока с контролем перегрузки		
12	Потребляемая мощность Не более 10 Вт			
13	Крепление	DIN-рейка		
14	Температура эксплуатации	от – 40 °C до +70 °C.		
15	Габаритные размеры корпуса	145мм х 90.2мм х 57.5мм		
16	Габаритные размеры упаковки, не более	165мм х 145мм х 55мм		
17	Вес нетто, не более	0,4 кг.		
18	Вес брутто, не более	0,5 кг.		

Особенности ЛЭРС Ethernet

Состав изделия

ETHERNET-контроллер состоит из:

- 1) Основного блока аппаратной версии «LC-ETH-2-RS232/485-1.X.X», включающего в себя:
 - а. Центральную плату;
 - б. ETHERNET -модуль;
 - в. клеммы подключения последовательных интерфейсов RS-232, RS-485/CAN0 и напряжения питания;
 - г. Графический дисплей.
- 2) Кабеля электропитания;
- 3) Кабеля RS-232 с разъемом DB-9F или DB-9M (в зависимости от комплекта поставки);

Внешний вид с указанием основных внешних элементов показан на рис. 1.

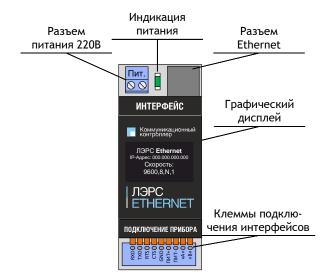
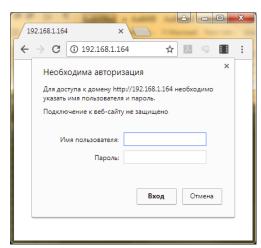


Рисунок 1. Внешний вид Ethernet

Внешний графический дисплей

Внешний дисплей предназначен для отображения состояния работы контроллера.

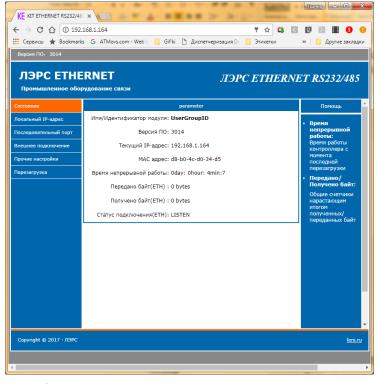

На экране отображаются:

- Заданная пользователем, текстовая метка контроллера;
- Серийный номер контроллера;
- Используемый ІР-Адрес;
- Настройки последовательного порта;
- Статус выхода питания RS-485/CAN0 порта.

WEB-Интерфейс

Аутентификация

При первичном подключении к контроллеру при помощи WEB-Интерфейса, контроллер запрашивает логин и пароль.

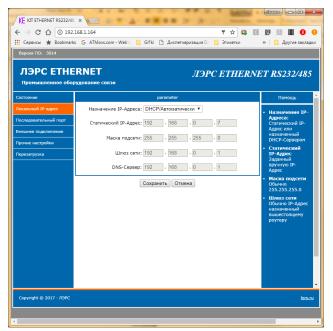

При правильном указании имени доступа и пароля, контроллер открывает WEB-страницу «Состояние».

Пароль может быть изменен на WEB-странице «Прочие настройки».

Имя пользователя WEB-Интерфейса по умолчанию: admin Пароль доступа к WEB-Интерфейсу по умолчанию: admin

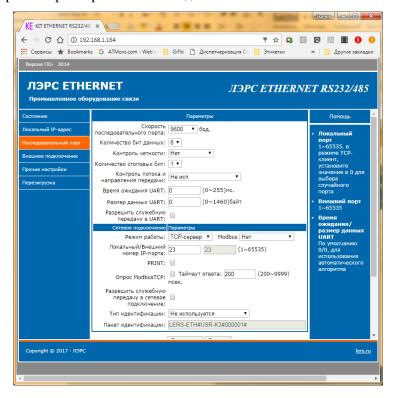
Состояние

WEB-страница «Состояние» отображает информацию о текущих параметрах контроллера: Версия ПО, IP и MAC адресах, статусе подключения и пр.:



Поле «Имя/Идентификатор модуля» назначается пользователем на странице «Прочие настройки» и служит для информационных целей.

Локальный ІР-адрес


WEB-страница «Локальный IP-адрес» позволяет настроить локальный IP-адрес контроллера. Возможны два вида настройки IP-адреса:

- 1. автоматическая настройка при помощи DHCP-сервера, при которой IP-адрес и другие параметры назначаются контроллеру при его подключении к сети Ethernet
- 2. ручная настройка при которой все параметры задаются вручную в соответствующих полях.

Последовательный порт

WEB-страница «Последовательный порт» позволяет настроить параметры последовательного порта и параметры сетевого подключения.

Параметр скорости порта может принимать значения от 600 до 115200 бод, количество бит данных от 5 до 8 бит.

Контроль четности может быть настроен как «Контроль четности (ЧЕТН, «Even»)», «Контроль нечетности (НЕЧЕТ, «Odd»)», «Всегда 1», «Всегда 0», либо отключен.

Количество стоповых бит может быть выбрано 1 или 2.

Контроль потока и направления передачи может быть выбран «Аппаратный CTS/RTS», «Аппаратный RS-485», либо отключен. В случае выбора «Аппаратный RS-485», цепи CTS/RTS управляют направлением передачи RS-485 порта. При использовании RS-485 интерфейса нужно обязательно устанавливать данный параметр в значение «Аппаратный RS-485».

Параметры последовательного порта по умолчанию:

Скорость порта - 115200

Количество бит данных - 8

Контроль четности – Нет (отключен)

Количество стоповых бит – 1

Контроль потока и направления передачи – Не исп. (отключен)

Режим работы сетевого подключения:

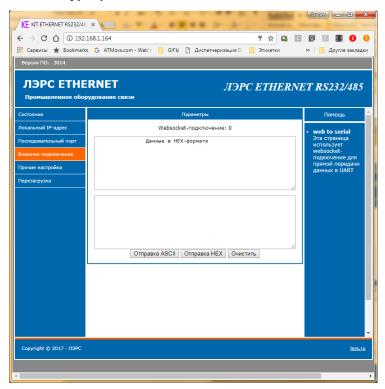
- 1. TCP/UDP-клиент
- 2. TCP/UDP-сервер
- 3. HTTPD-клиент

При выборе сетевого подключения «TCP-Клиент/Сервер» возможно включить обработку запросов/ответов в режиме ModbusTCP.

При выборе HTTPD-клиента можно указать желаемый URL-адрес и заголовок HTTPD-клиента.

Параметр «Локальный номер IP-порта» определяет на какой номер TCP/UDP-порта будут приниматься входящие подключения в режиме TCP/UDP-сервера.

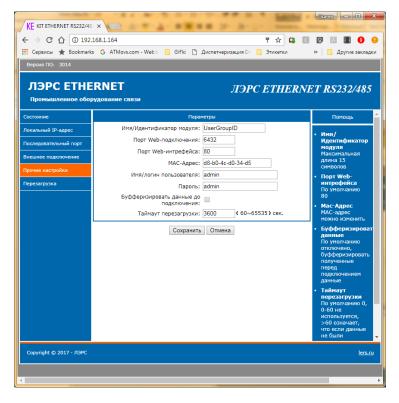
Параметр «Внешний номер IP-порта» определяет с какого номера TCP/UDP-порта будут инициироваться исходящие подключения в режиме TCP/UDP-клиента.


Параметр «Разрешить служебную передачу в сетевое подключение» позволяет отправлять указанную строку или набор шестнадцатеричных данных в сетевое подключение через указанный период времени.

Параметр «Тип идентификации» определяет будет или нет контроллер при установке соединения с сервером сбора данных в режиме TCP/UDP-клиента отправлять серверу модель и свой серийный номер для идентификации.

При указании типа идентификации «Модель и серийный номер» возможно использовать один входящий TCP/UDP-порт сервера для работы со всеми контроллерами.

Внешнее подключение


WEB-страница «Внешнее подключение» позволяет производить обмен данными с подключенным оборудованием вручную.

Обмен данными может производиться к текстовом или шестнадцатеричном виде.

Прочие настройки

WEB-страница «Прочие настройки» позволяет настроить дополнительные параметры работы контроллера.

Поле «Имя/Идентификатор модуля» позволяет указать понятную человеку метку идентифицирующую контроллер или объект на котором он установлен. Данное поле может передаваться при подключении к серверу сбора данных в режиме типа идентификации «Модель и серийный номер».

Параметр «Порт WEB-Интерфейса» позволяет задать порт WEB-сервера контроллера.

Параметр «МАС-Адрес» позволяет задать МАС-адрес вручную.

Параметры «Имя/логин пользователя» и «Пароль» определяют права доступа к WEB-Серверу контроллера.

Параметры по умолчанию: Порт WEB-Интерфейса: 80

Имя/логин пользователя: admin

Пароль: admin

Параметр «Буферизировать данные до подключения» позволяет включить накопление данных полученных из последовательного порта, если контроллер не находится в состоянии подключения к серверу в режиме TCP/UDP-клиент, либо не еще не приял входящее подключение в режиме TCP/UDP-сервер.

Параметр «Таймаут перезагрузки» определяет период времени, по истечении которого контроллер произведет автоматическую перезагрузку.

Перезагрузка

WEB-страница «Перезагрузка» позволяет дистанционно перезагрузить контроллер.

Интерфейсы подключения

Для подключения источников данных в контроллере предусмотрены порты ввода-вывода различных стандартов:

- RS-232, сигналы ТХ, RX, CTS, RTS, GND;
- RS-485, встроенный конвертер RS-232 порта, сигналы Data+ («В») и Data- («А») с автоматическим определением направления передачи;
- CAN0 встроенный конвертер RS-232 порта, сигналы CANH, CANL с автоматическим определением направления передачи.

Контроллер может выпускаться либо с RS-485 портом, либо с CAN портом.

Порт CAN предназначен для подключения оборудования использующего только физический протокол шины CAN. Контроллер не поддерживает канальный уровень шины CAN.

Последовательный порт

Порт подключения последовательного порта RS-232 и встроенный конвертер RS-485/CAN0 расположены на основной плате контроллера и доступны на пружинных контактах нижнего разъема.

Порт RS-232 занимает первые пять контактов 9-ти контактного пружинного разъема. Конвертер RS-485/CAN0 занимает следующие четыре контакта пружинного разъема. Место расположения разъемов показано на рис. 2. и рис. 3.

Нумерация контактов разъема производится слева направо при вертикальном размещении контроллера.

Подключение контактов RS-485 интерфейса производится по двум проводам. При подключении используются сигналы Data+ («В») и Data- («А»). Для интерфейса CAN используются сигналы CANH и CANL. Конвертер имеет клеммы выдачи электропитания 9В для питания внешних интерфейсов.

При использовании подключения RS-485/CAN0 на длинной линии рекомендуется на крайних устройствах включенных в шину включать согласующие резисторы сопротивлением 120 Ом. (терминаторы).

Расшифровка сигналов последовательного порта, их функционального назначения, номеров контактов приведена в табл. 5 и табл. 6.

Таблица 2. Контакты подключения порта контроллера с интерфейсом RS-485

Nº	Кон- такт	Нап рав- лен ие	Назначение	Контакт DB-9F (розетка) 54321 9876	Контакт DB-9М (вилка) 12345 6789
1	RXD	вход	Прием данных	3	2
2	TXD	вых.	Передача данных	2	3
3	RTS	вход	Управление потоком передачи	7	8
4	CTS	вых.	Управление потоком приема	8	7
5	GND		Общий провод	5	5
6	ПИТ+	вых.	Сигнал готовности контроллера	-	-
7	ПИТ-	вход	Сигнал готовности оборудования	-	=
8	«A»	вых.	Сигнал RS-485 интерфейса	-	-
9	«B»	вых.	Сигнал RS-485 интерфейса	_	-



Рисунок 2. Разъем подключения интерфейсов

Рисунок 3. Разъем подключения интерфейсов

Контакт Контакт

Таблица 6. Контакты подключения порта контроллера с интерфейсом CAN

№	Кон- такт	Нап рав- лен ие	Назначение	DB-9F (po3eTKa) 54321	DB-9М (вилка) 12345 6789
1	RXD	вход	Прием данных	3	2
2	TXD	вых.	Передача данных	2	3
3	RTS	вход	Управление потоком передачи	7	8
4	CTS	вых.	Управление потоком приема	8	7
5	GND		Общий провод	5	5
6	ПИТ+	вых.	Сигнал готовности контроллера	-	-
7	ПИТ-	вход	Сигнал готовности оборудования	-	=
8	CANH	вых.	Сигнал CAN интерфейса	-	=
9	CANL	вых.	Сигнал CAN интерфейса	-	-

Управление работой контроллера, его настроечные и системные параметры

Функционирование

ETHERNET-контроллер ЛЭРС Etherrnet представляют собой автономное электронное устройство работающее в соответствии с заложенной в него программе, и осуществляющее следующие функции:

- 1) Автоматическое подключение к информационной системе верхнего уровня в режиме TCP/UDP-Клиент в соответствии с настройками пользователя;
- 2) Автоматический прием подключений от информационной системы верхнего уровня в режиме TCP/UDP-Сервер в соответствии с настройками пользователя;
- 3) Отображение информации на графическом дисплее.

Все действия по настройке и управлению контроллером можно осуществить при помощи WEB-интерфейса.

Режимы передачи данных

Контроллер поддерживает следующие режимы передачи данных:

- 1) Передачу данных в режиме TCP/UDP-Сервер;
- 2) Передачу данных в режиме TCP/UDP -Клиент.

Работа контроллера в режиме «TCP/UDP-Клиент»

В режиме «TCP/UDP-Клиент» контроллер является активным устройством, он самостоятельно устанавливает соединение с выбранным пользователем сервером.

В момент подключения в режиме «ТСР-клиент» контроллер отправляет на сервер пакет идентификации, в котором содержится информация о серийном номере, и модели оборудования.

Работа контроллера в режиме «TCP/UDP-Cepвep»

В режиме «TCP/UDP-Сервер» контроллер является пассивным устройством, он принимает входящие TCP-подключения в соответствие с выбранными настройками.

Для доступа к контроллеру в режиме «TCP-Сервер» требуется, чтобы контроллеру был присвоен статический IP-адрес. Обычно, статический IP-адрес присваивается DHCP-сервером. В случае, если требуется задавать IP-адрес в явном виде, он указывается в параметре «IP».

Процедура автоматического перезапуска

Для автоматического перезапуска контроллера предусмотрен специальный сторожевой таймер (Watch Dog Timer, WDT), который перезапускает контроллер при превышении заданного порога срабатывания.

Таймер сбрасывается после каждого успешного сеанса связи.

Значение таймера 180 минут (3 часа).

Подробнее про настройку параметров автоматического перезапуска см. раздел «WEB-Интерфейс. Прочие настройки».

Маркировка

Каждый экземпляр ETHERNET-контроллера ЛЭРС Ethernet имеет идентификационную наклейку, расположенную на внешней, боковой стороне контроллера:

Рисунок 4. Место расположения маркировки

На идентификационной наклейке размещена информация:

- 1) Название модели;
- 2) Артикул (Р/N);
- 3) Серийный номер (S/N).

Транспортирование и хранение

Условия транспортирования

Транспортирование упакованного изделия можно всеми видами крытых транспортных средств (автомобильным, железнодорожным, речным, авиационным и т.д.) в соответствии с действующими на данном виде транспорта правилами перевозок.

Условия транспортирования изделия должны соответствовать:

- в зависимости от воздействия климатических факторов внешней среды условия хранения изделий 2 по ГОСТ 15150-69;
- при транспортировании воздушным транспортом, нижнее значение атмосферного давления устанавливают 19,4 кПа (145 мм рт. ст.);
- в зависимости от воздействия механических факторов условия транспортирования С по ГОСТ 23216-78.

Условия хранения

Изделие должно храниться в заводской упаковке. Условия хранения должны соответствовать группе 2 по ГОСТ 15150-69.

Информация об изготовителе

Изготовителем контроллера является:

ООО «Теплотехническая компания».

Почтовый адрес:

680033, г. Хабаровск, ул. Тихоокеанская, 221а

Телефон для связи:

- (4212) 725-501
- (4212) 725-502

Факс:

- (4212) 725-501
- (4212) 725-502

Интернет адрес предприятия изготовителя:

http://www.lers.ru

Адреса электронной почты предприятия изготовителя:

- <u>info@lers.ru</u> общие вопросы
- <u>sales@lers.ru</u> отдел продаж
- <u>hw@lers.ru</u> техническая поддержка